

Optimal Neural Network Based Classifier Using
Optical Character Recognition Engine for Tamil

Language
 Dr.N Venkateswaran1 Dr.PS Jagadeesh Kumar2*

*Corresponding author

Abstract-In this paper, a neural network based classifier using
optical character recognition engine for Tamil language is
proposed. At the first level, features derived at each sample
point of the preprocessed character are used to construct a
subspace using Optical Character Recognition (OCR)
software. Recognition of the test sample is performed using a
neural network based classifier. Based on the analysis of the
proposed method, it was identified that Tamil character
recognition was optimal and the implementation reduces the
coding complexity to a greater extent. The proposed method
can be used to recognize any language characters but in this
paper only Tamil characters were tested for recognition. As a
future enhancement, implementation of speech processing can
be used to identify the classified characters to visually
impaired persons for ease. The same technique can be used to
resolve confusions between triplets and quadruples of similar
characters. The same recognition could be carried out not
only for individual characters but also for Tamil words.

General Terms
Optical Character Recognition, Neural Network, Tamil language

Keywords
Feature matrix, Character grid, Character Switching, Nearest
neighbor classifier, Neural network based classifier

1. INTRODUCTION

Tamil is a popular classical language spoken by a
significant population in south East Asian countries. There
are 156 distinct symbols in Tamil. For the recognition of
Tamil characters, earlier methods use class specific
subspaces and employed elastic matching schemes as in
hidden markov models for recognition of Tamil characters.
In this paper, a neural network based classifier using optical
character recognition engine is proposed. For the first level
of classification, Optical character recognition [1]
algorithm for the extraction of features from Tamil
characters in a subspace was implemented. For the
classification of a test character, we employ a neural
network based classifier. It is an established fact that one
way of assessing the performance of any given classifier
depends on how well it can perform on an unknown test
sample [2]. The nearest neighbor classifier in the first stage
fails to capture finer nuances between certain structural
shapes that form the basic cues in making certain characters
distinct. To further improve the classification accuracy of
the system, it becomes imperative to design a robust, neural
network classification scheme to distinguish between
visually similar misclassified characters.

2. NEURAL NETWORK

2.1 Basics of Neural Networks
Neural networks are typically organized in layers. Layers
are made up of a number of interconnected 'nodes' which
contain an 'activation function'. Patterns are presented to
the network via the 'input layer', which communicates to
one or more 'hidden layers' where the actual processing is
done via a system of weighted 'connections'. The hidden
layers then link to an 'output layer' where the answer is
output as shown in Fig.1. Most ANNs contain some form
of 'learning rule' which modifies the weights of the
connections according to the input patterns that it is
presented with. In a sense, ANNs learn by example as do
their biological counterparts; a child learns to recognize
dogs from examples of dogs. Although there are many
different kinds of learning rules used by neural networks,
this demonstration is concerned only with one; the delta
rule. The delta rule is often utilized by the most common
class of ANNs called 'back propagation neural networks'
(BPNNs).
Back propagation is an abbreviation for the backwards
propagation of error. With the delta rule, as with other
types of back propagation, 'learning' is a supervised process
that occurs with each cycle or 'epoch' (i.e. each time the
network is presented with a new input pattern) through a
forward activation flow of outputs, and the backwards error
propagation of weight adjustments.

Fig 1: Layers in Neural Network
More simply, when a neural network is initially presented
with a pattern it makes a random 'guess' as to what it might
be. It then sees how far its answer was from the actual one
and makes an appropriate adjustment to its connection
weights. Back propagation performs a gradient descent
within the solution's vector space towards a 'global
minimum' along the steepest vector of the error surface.
The global minimum is that theoretical solution with the
lowest possible error.

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3349

The error surface itself is a hyper paraboloid but is seldom
'smooth'. Indeed, in most problems, the solution space is
quite irregular with numerous 'pits' and 'hills' which may
cause the network to settle down in a 'local minimum'
which is not the best overall solution. Since the nature of
the error space cannot be known a prioi, neural network
analysis often requires a large number of individual runs to
determine the best solution. Most learning rules have built-
in mathematical terms to assist in this process which
control the 'speed' (Beta-coefficient) and the 'momentum' of
the learning. The speed of learning is actually the rate of
convergence between the current solution and the global
minimum. Momentum helps the network to overcome
obstacles (local minima) in the error surface and settle
down at or near the global minimum [3, 7].
Once a neural network is 'trained' to a satisfactory level it
may be used as an analytical tool on other data. To do this,
the user no longer specifies any training runs and instead
allows the network to work in forward propagation mode
only. New inputs are presented to the input pattern where
they filter into and are processed by the middle layers as
though training were taking place, however, at this point
the output is retained and no back propagation occurs. The
output of a forward propagation run is the predicted model
for the data which can then be used for further analysis and
interpretation. It is also possible to over-train a neural
network, which means that the network has been trained
exactly to respond to only one type of input; which is much
like rote memorization. If this should happen then learning
can no longer occur and the network is referred to as
having been "grand mothered" in neural network jargon. In
real-world applications this situation is not very useful
since one would need a separate grand mothered network
for each new kind of input.

2.2 Advantages and Disadvantages
There are many advantages and limitations to neural
network analysis and to discuss this subject properly,
should be looked at each individual type of network, which
isn't necessary for this general discussion.
Depending on the nature of the application and the strength
of the internal data patterns you can generally expect a
network to train quite well. This applies to problems where
the relationships may be quite dynamic or non-linear.
ANNs provide an analytical alternative to conventional
techniques which are often limited by strict assumptions of
normality, linearity, variable independence etc. Because an
ANN can capture many kinds of relationships it allows the
user to quickly and relatively easily model phenomena
which otherwise may have been very difficult or impossible
to explain otherwise.
In reference to back propagation networks however, there
are some specific issues potential users should be aware of.
Back propagation neural networks (and many other types of
networks) are in a sense the ultimate 'black boxes'. Apart
from defining the general architecture of a network and
perhaps initially seeding it with a random numbers, the user
has no other role than to feed it input and watch it train and
await the output. In fact, it has been said that with back
propagation, "you almost don't know what you're doing".

Some software freely available software packages do allow
the user to sample the networks progresses at regular time
intervals, but the learning itself progresses on its own. The
final product of this activity is a trained network that
provides no equations or coefficients defining a
relationship (as in regression) beyond its own internal
mathematics. The network 'IS' the final equation of the
relationship.
Back propagation networks also tend to be slower to train
than other types of networks and sometimes require
thousands of epochs. If run on a truly parallel computer
system this issue is not really a problem, but if the BPNN is
being simulated on standard serial machine (i.e. a single
SPARC, Mac or PC) training can take some time. This is
because the machines CPU must compute the function of
each node and connection separately, which can be
problematic in very large networks with a large amount of
data. However, the speed of most current machines is such
that this is typically not much of an issue.

3. OPTICAL CHARACTER RECOGNITION
The mechanical or electronic conversion of typewritten or
printed text into machine-encoded text is called Optical
Character Recognition (OCR). It is widely used as a form
of data entry from printed paper data records, whether
passport documents, invoices, bank statements,
computerized receipts, business cards, mail, printouts of
static-data, or any suitable documentation. It is a common
method of digitizing printed texts so that it can be
electronically edited, searched, stored more compactly,
displayed on-line, and used in machine processes such
as machine translation, text-to-speech, key data and text
mining. OCR is a field of research in pattern
recognition, artificial intelligence and computer vision [2].
Early versions needed to be trained with images of each
character, and worked on one font at a time. Advanced
systems capable of producing a high degree of recognition
accuracy for most fonts are now common. Some systems
are capable of reproducing formatted output that closely
approximates the original page including images, columns,
and other non-textual components. Early optical character
recognition may be traced to technologies involving
telegraphy and creating reading devices for the blind. In
1914, Emanuel Goldberg developed a machine that read
characters and converted them into standard telegraph code.
Concurrently, Edmund Fournier d'Albe developed
the Optophone, a handheld scanner that when moved across
a printed page, produced tones that corresponded to
specific letters or characters. In the late 1920s and into the
1930s Emanuel Goldberg developed what he called a
"Statistical Machine" for searching microfilm archives
using an optical code recognition system. In 1931 he was
granted USA Patent number 1,838,389 for the invention.
The patent was acquired by IBM.

4. TAMIL LANGUAGE
Tamil belongs to the southern branch of the Dravidian
languages, a family of around 26 languages native to
the Indian subcontinent. It is also classified as being part of
a Tamil language family, which alongside Tamil proper,

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3350

also includes the languages of about 35 ethno-linguistic
groups such as the Irula and Yerukula languages. The
closest major relative of Tamil is Malayalam; the two
began diverging around the 9th century. Although many of
the differences between Tamil and Malayalam demonstrate
a pre-historic split of the western dialect, the process of
separation into a distinct language, Malayalam, was not
completed until sometime in the 13th or 14th century.
According to Hindu legend, Tamil, or in personification
form Tamil Tāy (Mother Tamil), was created by Shiva.
Shiva's Son, Lord Murugan, known as Lord Kartikeya in
other Indian languages, and the sage Agastya brought it to
people [4].
Tamil phonology is characterized by the presence
of retroflex consonants and multiple rhotics. Tamil does not
distinguish phonologically between voiced and unvoiced
consonants; phonetically, voice is assigned depending on a
consonant's position in a word. Tamil phonology permits
few consonant clusters, which can never be word initial.
Native grammarians classify Tamil phonemes into vowels,
consonants, and a "secondary character", the āytam. The
vocabulary of Tamil is mainly Dravidian. A strong sense
of linguistic purism is found in Modern Tamil, which
opposes the use of foreign loanwords. Nonetheless, a
number of words used in classical and modern Tamil are
loanwords from the languages of neighboring groups. In
more modern times, Tamil has imported words
from Urdu and Marathi, reflecting groups that have
influenced the Tamil area at various points of time, and
from neighboring languages such as Telugu, Kannada, and
Sinhala. During the modern period, words have also been
adapted from European languages, such as Portuguese,
French, and English.
The strongest impact of purism in Tamil has been on words
taken from Sanskrit. During its history, Tamil, along with
other languages like Telugu, Kannada, Malayalam etc., was
influenced by Sanskrit in terms of vocabulary, grammar
and literary styles, reflecting the trend of Sanskritisation in
the Tamil country. Tamil vocabulary never became quite as
heavily sanskritised as that of the other Dravidian
languages, and unlike in those languages, it was and
remains possible to express complex ideas (including in
science, art, religion and law) without the use of Sanskrit
loan words. In addition, Sanskritisation was actively
resisted by a number of authors of the late medieval period,
culminating in the 20th century in a movement called taṉit
tamiḻ iyakkam (meaning "pure Tamil movement"), led by
Parithimaar Kalaignar and Maraimalai Adigal, which
sought to remove the accumulated influence of Sanskrit on
Tamil. As a result of this, Tamil in formal documents,
literature and public speeches has seen a marked decline in
the use Sanskrit loan words in the past few decades, under
some estimates having fallen from 40–50% to about 20%.

As a result, the Prakrit and Sanskrit loan words used in
modern Tamil are, unlike in some other Dravidian
languages, restricted mainly to some spiritual terminology
and abstract nouns. In the 20th century, institutions and
learned bodies have, with government support, generated
technical dictionaries for Tamil containing neologisms and

words derived from Tamil roots to replace loan words from
English and other languages [5].

5. IMPLEMENTATION
This paper is implemented with the help of MATLAB
Simulink environment. The MATLAB high-performance
language for technical computing integrates computation,
visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in
familiar mathematical notation. MATLAB is a high-level
technical computing language and interactive environment
for algorithm development, data visualization, data
analysis, and numeric computation. Using the MATLAB
product, one can solve technical computing problems faster
than with traditional programming languages, such as C,
C++, and FORTRAN. MATLAB can be used in a wide
range of applications, including signal and image
processing, communications, control design, test and
measurement, financial modeling and analysis, and
computational biology. It include features like high-level
language for technical computing, development
environment for managing code, files, and data, interactive
tools for iterative exploration, design, and problem solving,
mathematical functions for linear algebra, statistics, Fourier
analysis, filtering, optimization, and numerical integration,
2-D and 3-D graphics functions for visualizing data and
tools for building custom graphical user interfaces.

5.1 Raw input of Tamil character
As shown in the Fig.2 system design, the Tamil character to
be recognized is given as input. Initially the Tamil
character is converted to grayscale and the grayscale image
is converted into binary image in-order to make it
convenient for pre-processing.

5.2 Pre-processing the input
Most of the recognition and classification techniques
require the data to be in a predefined type and format which
satisfy several requirements like size, quality, and
invariance. These requirements are generally not met in the
case of regional languages, because of many factors such as
noise during digitalizing, irregularity, and styles variations.
Preprocessing is performed to overcome these problems by
performing smoothing, point clustering and dehooking.
First smoothing is performed using low pass filter
algorithm to reduce noise and remove imperfection caused
by acquisition device. Point clustering is then performed in
order to eliminate redundant points by averaging the
neighboring points. Dehooking is the final preprocessing
procedure to eliminate the part of the stroke which contains
hooks which are commonly encountered at the strokes
ends.

5.3 Formation of feature matrix
The input characters are sampled to 60 points and feature
matrix is formed. The matrix is then transformed into 8
subspaces using OCR. There are two basic types of core
OCR algorithm, which may produce a ranked list of
candidate characters. Matrix matching involves comparing
an image to a stored glyph on a pixel-by-pixel basis; it is

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3351

also known as pattern matching, pattern recognition, or
image correlation. This relies on the input glyph being
correctly isolated from the rest of the image, and on the
stored glyph being in a similar font and at the same scale.
This technique works best with typewritten text and does
not work well when new fonts are encountered. This is the
technique the early physical photocell-based OCR
implemented, rather directly.
Feature extraction decomposes glyphs into "features" like
lines, closed loops, line direction, and line intersections.
These are compared with an abstract vector-like
representation of a character, which might reduce to one or
more glyph prototypes.
General techniques of feature detection in computer
vision are applicable to this type of OCR, which is
commonly seen in "intelligent" handwriting
recognition and indeed most modern OCR
software. Nearest neighbour classifiers such as the k-
nearest neighbours algorithm are used to compare image
features with stored glyph features and choose the nearest
match. Software such as Cuneiform and Tesseract use a
two-pass approach to character recognition. The second
pass is known as "adaptive recognition" and uses the letter
shapes recognized with high confidence on the first pass to
recognize better the remaining letters on the second pass.
This is advantageous for unusual fonts or low-quality scans
where the font is distorted (e.g. blurred or faded).

Fig 2: System Design

5.4 Character grid
In the proposed system design, feature extraction consists
of three steps: extreme coordinates measurement, grabbing
character into grid, and character digitization. The Tamil
character is captured by its extreme coordinates from left
/right and top/bottom and is subdivided into a rectangular
grid of specific rows and columns. The algorithm
automatically adjusts the size of grid and its constituents
according to the dimensions of the character. Then it
searches the presence of character pixels in every box of
the grid. The boxes found with character pixels are
considered “on” and the rest are marked “off” as shown in
Fig.6.

5.5 Character Switching
A binary string of each character is formed locating the
“on” and “off” boxes (named as character switching) and
presented to the neural network input for training and
recognition purposes. The total number of grid boxes
represented the number of binary inputs. A 14x8 grid thus
resulted in 112 inputs to the recognition model. An
equivalent statement would be that a 14x8 grid provided a
112 dimensional input feature vector. The developed
software contains a display of this phenomenon by filling
up the intersected squares as shown in Fig.7.

5.6 Neural network based classifier
The work flow for the neural network design process has
seven steps:

a) Collect data
b) Create the network
c) Configure the network
d) Initialize the weights and biases
e) Train the network
f) Validate the network
g) Use the network

After a neural network has been created, it needs to be
configured and then trained. Configuration involves
arranging the network so that it is optimal with classifying
the Tamil characters, as defined by sample data [3].
After the network has been configured, the adjustable
network parameters (called weights and biases) need to be
tuned, so that the network performance is optimized. This
tuning process is referred to as training the network.
Configuration and training require that the network be
provided with example data. For many types of neural
networks, the weight function is a product of a weight times
the input, but other weight functions (e.g., the distance
between the weight and the input, |w − p|) are sometimes
used. The most common net input function is the
summation of the weighted inputs with the bias, but other
operations, such as multiplication, can be used [6, 7].

5.7 Test data and output
5.7.1 Unit testing
Unit testing is conducted to verify the functional
performance of each modular component of the software.
Unit testing focuses on the smallest unit of the software

Training
Data set

Trained

data
weight

Tamil
Character

input

OCR based
Feature

extraction

Character
Grid

Character

Switching

Neural network
Classifier

Classification Result

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3352

design (i.e.), the module. The white-box testing techniques
were heavily employed for unit testing.
5.7.2 Functional tests
Functional test cases involved exercising the code with
nominal input values for which the expected results are
known, as well as boundary values and special values, such
as logically related inputs, files of identical elements, and
empty files. Three types of tests in Functional test:
a) Performance Test
b) Stress Test
c) Structured Test

5.7.3 Performance test
It determines the amount of execution time spent in various
parts of the unit, program throughput, and response time
and device utilization by the program unit.

5.7.4 Stress test
Stress Test is those test designed to intentionally break the
unit. A Great deal can be learned about the strength and
limitations of a program by examining the manner in which
a programmer in which a program unit breaks.

5.7.5 Structured test
Structure Tests are concerned with exercising the internal
logic of a program and traversing particular execution
paths. The way in which White-Box test strategy was
employed to ensure that the test cases could Guarantee that
all independent paths within a module have been have been
exercised at least once.
a) Exercise all logical decisions on their true or false sides.
b) Execute all loops at their boundaries and within their

operational bounds.
c) Exercise internal data structures to assure their validity.
d) Checking attributes for their correctness.
e) Handling end of file condition, I/O errors, buffer

problems and textual errors in output information.

5.7.6 Integration testing
Integration testing is a systematic technique for
construction the program structure while at the same time
conducting tests to uncover errors associated with
interfacing. i.e., integration testing is the complete testing
of the set of modules which makes up the product. The
objective is to take untested modules and build a program
structure tester should identify critical modules. Critical
modules should be tested as early as possible. One
approach is to wait until all the units have passed testing,
and then combine them and then tested. This approach is
evolved from unstructured testing of small programs.
Another strategy is to construct the product in increments
of tested units. A small set of modules are integrated
together and tested, to which another module is added and
tested in combination. And so on. The advantages of this
approach are that, interface dispenses can be easily found
and corrected. The major error that was faced during the
project is linking error. When all the modules are combined
the link is not set properly with all support files. Then we
checked out for interconnection and the links. Errors are
localized to the new module and its interconnections. The

product development can be staged, and modules integrated
in as they complete unit testing. Testing is completed when
the last module is integrated and tested.

5.8 Testing strategies
5.8.1 Testing
Testing is a process of executing a program with the intent
of finding an error. A good test case is one that has a high
probability of finding an as-yet –undiscovered error. A
successful test is one that uncovers an as-yet- undiscovered
error. System testing is the stage of implementation, which
is aimed at ensuring that the system works accurately and
efficiently as expected before live operation commences. It
verifies that the whole set of programs hang together.
System testing requires a test consists of several key
activities and steps for run program, string, system and is
important in adopting a successful new system. This is the
last chance to detect and correct errors before the system is
installed for user acceptance testing.
The software testing process commences once the program
is created and the documentation and related data structures
are designed. Software testing is essential for correcting
errors. Otherwise the program or the project is not said to
be complete. Software testing is the critical element of
software quality assurance and represents the ultimate the
review of specification design and coding. Testing is the
process of executing the program with the intent of finding
the error. A good test case design is one that as a
probability of finding an yet undiscovered error. A
successful test is one that uncovers a yet undiscovered
error. Any engineering product can be tested in one of the
two ways:

5.8.1.1 White box testing
This testing is also called as Glass box testing. In this
testing, by knowing the specific functions that a product
has been design to perform test can be conducted that
demonstrate each function is fully operational at the same
time searching for errors in each function. It is a test case
design method that uses the control structure of the
procedural design to derive test cases. Basis path testing is
a white box testing. Basis path testing:
a) Flow graph notation
b) Cyclometric complexity
c) Deriving test cases
d) Graph matrices Control

5.8.1.2 Black box testing
In this testing by knowing the internal operation of a
product, test can be conducted to ensure that “all gears
mesh”, that is the internal operation performs according to
specification and all internal components have been
adequately exercised. It fundamentally focuses on the
functional requirements of the software. The steps involved
in black box test case design are:
a) Graph based testing methods
b) Equivalence partitioning
c) Boundary value analysis
d) Comparison testing

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3353

5.8.2 Software testing strategies:
A software testing strategy provides a road map for the
software developer. Testing is a set activity that can be
planned in advance and conducted systematically. For this
reason a template for software testing a set of steps into
which we can place specific test case design methods
should be strategy should have the following
characteristics:
a) Testing begins at the module level and works “outward”

toward the integration of the entire computer based
system.

b) Different testing techniques are appropriate at different
points in time.

c) The developer of the software and an independent test
group conducts testing.

d) Testing and Debugging are different activities but
debugging must be accommodated in any testing
strategy.

5.8.2.1 Integration testing:
Integration testing is a systematic technique for
constructing the program structure while at the same time
conducting tests to uncover errors associated with.
Individual modules, which are highly prone to interface
errors, should not be assumed to work instantly when we
put them together. The problem of course, is “putting them
together”- interfacing. There may be the chances of data
lost across on another’s sub functions, when combined may
not produce the desired major function; individually
acceptable impression may be magnified to unacceptable
levels; global data structures can present problems [8].
5.8.2.2 Program testing:
The logical and syntax errors have been pointed out by
program testing. A syntax error is an error in a program
statement that in violates one or more rules of the language
in which it is written. An improperly defined field
dimension or omitted keywords are common syntax error.
These errors are shown through error messages generated
by the computer. A logic error on the other hand deals with
the incorrect data fields, out-off-range items and invalid
combinations. Since the compiler s will not deduct logical
error, the programmer must examine the output. Condition
testing exercises the logical conditions contained in a
module. The possible types of elements in a condition
include a Boolean operator, Boolean variable, a pair of
Boolean parentheses, a relational operator or an arithmetic
expression. Condition testing method focuses on testing
each condition in the program. The purpose of condition
test is to deduct not only errors in the condition of a
program but also other a errors in the program.
5.8.2.3 Security testing:
Security testing attempts to verify the protection
mechanisms built in to a system well, in fact, protect it
from improper penetration. The system security must be
tested for invulnerability from frontal attack must also be
tested for invulnerability from rear attack. During security,
the tester places the role of individual who desires to
penetrate system.
5.8.2.4 Validation testing
At the culmination of integration testing, software is
completely assembled as a package. Interfacing errors have

been uncovered and corrected and a final series of software
test-validation testing begins. Validation testing can be
defined in many ways, but a simple definition is that
validation succeeds when the software functions in manner
that is reasonably expected by the customer. Software
validation is achieved through a series of black box tests
that demonstrate conformity with requirement. After
validation test has been conducted, one of two conditions
exists.
a) The function or performance characteristics confirm to

specifications and are accepted.
b) Validation from specification is uncovered and a

deficiency created.
Deviation or errors discovered at this step in this project is
corrected prior to completion of the project with the help of
the user by negotiating to establish a method for resolving
deficiencies. Thus the proposed system under consideration
has been tested by using validation testing and found to be
working satisfactorily. Though there were deficiencies in
the system they were not catastrophic [9].
5.8.2.5 User acceptance testing
User acceptance of the system is key factor for the success
of any system. The system under consideration is tested for
user acceptance by constantly keeping in touch with
prospective system and user at the time of developing and
making changes whenever required. This is done in
regarding to the following points.
a) Input screen design.
b) Output screen design.

6. CONCLUSION AND FUTURE ENHANCEMENT
The proposed technique is tested on a dataset of Tamil
Characters. Five training samples for each character were
used. The characters are resampled to 60 points and
normalized to [0, 1]. A character feature matrices of size
60x15 was constructed and transform the features to an 8-
dimensional subspace by performing ORC software. A
nearest neighbor classifier is used to classify the test
character in the subspace. If the estimated class label is one
of the confusion pairs, we input the test character to an
appropriate neural network based classifier at the next level.
There is an increase in the classification accuracy of a few
frequently confused characters after the neural network
classifier. The improvement in performance is observed in
both the validation/training and test sets.
In a ROC curve the true positive rate (Sensitivity) is plotted
in function of the false positive rate (Specificity) for
different cut-off points of a parameter. Each point on the
ROC curve represents a sensitivity/specificity pair
corresponding to a particular decision threshold. The area
under the ROC curve is a measure of how well a parameter
can distinguish between two diagnostic groups as shown in
Fig. 8, 9, 10.
As a future enhancement to this project, in addition to
giving visual feedback of the recognized character we can
also provide audio feedback of the same. The same
technique can be used to resolve confusions between
triplets and quadruples of similar characters. The same
recognition could be carried out not only for individual
characters but Tamil words also.

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3354

Fig 3: Grayscale image

Fig 4: Converted binary image

 Fig 5: Pad for writing the characters

 Fig 6: Character written on pad for recognition

 Fig 7: Displaying the recognized character

Fig 8: ROC Curve

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3355

 Fig 9: Sensitivity and specificity graph

 Fig 10: Roseplot partest graph

REFERENCES
[1] R. Jagadeesh Kannan, R. Prabhakar, “A Comparative Study of

Optical Character Recognition for Tamil Script”, European Journal
of Scientific Research, Vol.35 No.4, 2009, pp: 570-582.

[2] R.Indra Gandhi, Dr.K.Iyakutti, “An Attempt to Recognize
Handwritten Tamil Character Using Kohonen SOM” International
Journal of Advance Networking and Applications, Volume 1, Issue
3, 2009, pp: 188-192.

[3] Dr.PSJ Kumar, “Neural network based block classification of
computer screen image for desktop sharing” International Journal of
Advanced Research in Computer Engineering and Software
Engineering, Vol.4, Issue 8, Aug’2014, pp: 703-711.

[4] Dr. C P Sumathi, S Karpagavalli, “Techniques and methodologies
for recognition of Tamil typewritten and handwritten characters: a
survey” International Journal of Computer Science & Engineering
Survey, Vol.3, No.6, December 2012, pp: 23-35.

[5] Dr.Amitabh Wahi, Mr.Sundaramurthy.S, Poovizhi.P, “Recognition
of Handwritten Tamil Characters using Wavelet International
Journal of Computer Science & Engineering Technology”, Vol. 5
No. 4, Apr 2014, pp: 335-340.

[6] M.Sivasankari, Dr.S.P.Victor, “Multilingual Handwritten Text
Verification”, International Journal of Computer Science and
Information Technologies, Vol. 5, 2014, pp: 3605-3607.

[7] Harshal Bobade, Amit Sahu, “Character Recognition Technique
using Neural Network”, International Journal of Engineering
Research and Applications, Vol. 3, Issue 2, March - April 2013,
pp:1778-1783.

[8] Prashant M. Kakde, Vivek R. Raut, “Performance analysis of
handwritten Devnagri characters recognition through Machine
intelligence”, International Journal of Emerging Technology and
Advanced Engineering, Volume 2, Issue 7, July 2012, pp: 238-247.

[9] Dhiraj K. Das, “Comparative Analysis of PCA and 2DPCA in Face
Recognition”, International Journal of Emerging Technology and
Advanced Engineering, Volume 2, Issue 1, January 2012, pp: 330-
336.

BIOGRAPHY

Corresponding Author

Dr. P. S. Jagadesh Kumar, Professor in the Department of
Computer Science and Engineering, Don Bosco Institute of
Technology, Bengaluru has 16 years of teaching experience,
including 6 year of research experience in the field of image
compression. He received his B.E. degree from University of
Madras in Electrical and Electronics Engineering discipline in the
year 1999. He obtained his M.E degree in 2004 with
specialization in Computer Science and Engineering from
Annamalai University, Chidambaram and his Ph.D. from Anna
University, Chennai.

N Venkateswaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3349-3356

www.ijcsit.com 3356

